Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Moss-Burstein and plasma reflection characteristics of heavily doped n-type InxGa1-xAs and InPyAs1-y

Identifieur interne : 001552 ( France/Analysis ); précédent : 001551; suivant : 001553

Moss-Burstein and plasma reflection characteristics of heavily doped n-type InxGa1-xAs and InPyAs1-y

Auteurs : RBID : Pascal:99-0282029

Descripteurs français

English descriptors

Abstract

Degenerately doped (>1019cm-3) n-type InxGa1-xAs (x∼0.67) and InPyAs1-y (y∼0.65) possess a number of intriguing electrical and optical properties relevant to electro-optic devices and thermophotovoltaic devices in particular. Due to the low electron effective mass of these materials (m*<0.2) and the demonstrated ability to incorporate n-type dopants into the high 1019cm-3 range, both the Moss-Burstein band gap shift and plasma reflection characteristics are particularly dramatic. For InGaAs films with a nominal undoped band gap of 0.6 eV and N=5×1019cm-3, the fundamental absorption edge increased to 1.27 eV. InPAs films exhibit a shorter plasma wavelength (λp∼5μm) in comparison to InGaAs films (λp∼6μm) with similar doping concentrations. The behavior of the plasma wavelength and the fundamental absorption edge are investigated in terms of conduction band nonparabolicity and Γ-L valley separation using detailed band structure measurements and calculations. © 1999 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:99-0282029

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Moss-Burstein and plasma reflection characteristics of heavily doped n-type In
<sub>x</sub>
Ga
<sub>1-x</sub>
As and InP
<sub>y</sub>
As
<sub>1-y</sub>
</title>
<author>
<name sortKey="Charache, G W" uniqKey="Charache G">G. W. Charache</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Lockheed Martin, Inc., Schenectady, New York 12301-1072</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Lockheed Martin, Inc., Schenectady</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="04">
<s1>Bettis Laboratory, West Mifflin, Pennsylvania 15122</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Bettis Laboratory, West Mifflin</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Molecular Simulations Inc., Orsay, France</s1>
</inist:fA14>
<country xml:lang="fr">France</country>
<wicri:regionArea>Molecular Simulations Inc., Orsay</wicri:regionArea>
<placeName>
<region type="région" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Depoy, D M" uniqKey="Depoy D">D. M. Depoy</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Lockheed Martin, Inc., Schenectady, New York 12301-1072</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Lockheed Martin, Inc., Schenectady</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Raynolds, J E" uniqKey="Raynolds J">J. E. Raynolds</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Lockheed Martin, Inc., Schenectady, New York 12301-1072</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Lockheed Martin, Inc., Schenectady</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Baldasaro, P F" uniqKey="Baldasaro P">P. F. Baldasaro</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Lockheed Martin, Inc., Schenectady, New York 12301-1072</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Lockheed Martin, Inc., Schenectady</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Miyano, K E" uniqKey="Miyano K">K. E. Miyano</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Physics and New York State Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 12210</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Physics and New York State Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Holden, T" uniqKey="Holden T">T. Holden</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Physics and New York State Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 12210</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Physics and New York State Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pollak, F H" uniqKey="Pollak F">F. H. Pollak</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Physics and New York State Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 12210</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Physics and New York State Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sharps, P R" uniqKey="Sharps P">P. R. Sharps</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194</s1>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Research Triangle Institute, Research Triangle Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Timmons, M L" uniqKey="Timmons M">M. L. Timmons</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194</s1>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Research Triangle Institute, Research Triangle Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Geller, C B" uniqKey="Geller C">C. B. Geller</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Lockheed Martin, Inc., Schenectady, New York 12301-1072</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Lockheed Martin, Inc., Schenectady</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mannstadt, W" uniqKey="Mannstadt W">W. Mannstadt</name>
</author>
<author>
<name sortKey="Asahi, R" uniqKey="Asahi R">R. Asahi</name>
</author>
<author>
<name sortKey="Freeman, A J" uniqKey="Freeman A">A. J. Freeman</name>
</author>
<author>
<name sortKey="Wolf, W" uniqKey="Wolf W">W. Wolf</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Lockheed Martin, Inc., Schenectady, New York 12301-1072</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Lockheed Martin, Inc., Schenectady</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">99-0282029</idno>
<date when="1999-07-01">1999-07-01</date>
<idno type="stanalyst">PASCAL 99-0282029 AIP</idno>
<idno type="RBID">Pascal:99-0282029</idno>
<idno type="wicri:Area/Main/Corpus">014F24</idno>
<idno type="wicri:Area/Main/Repository">013E08</idno>
<idno type="wicri:Area/France/Extraction">001552</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Conduction bands</term>
<term>Effective mass</term>
<term>Electro-optical effects</term>
<term>Energy gap</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>Heavily doped semiconductors</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Semiconductor plasma</term>
<term>Semiconductor thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7361E</term>
<term>7866F</term>
<term>7350M</term>
<term>7820J</term>
<term>7118</term>
<term>7120N</term>
<term>7320M</term>
<term>Etude expérimentale</term>
<term>Gallium arséniure</term>
<term>Indium composé</term>
<term>Semiconducteur III-V</term>
<term>Plasma semiconducteur</term>
<term>Semiconducteur fortement dopé</term>
<term>Effet électrooptique</term>
<term>Masse effective</term>
<term>Bande interdite</term>
<term>Couche mince semiconductrice</term>
<term>Bande conduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Degenerately doped (>10
<sup>19</sup>
cm
<sup>-3</sup>
) n-type In
<sub>x</sub>
Ga
<sub>1-x</sub>
As (x∼0.67) and InP
<sub>y</sub>
As
<sub>1-y</sub>
(y∼0.65) possess a number of intriguing electrical and optical properties relevant to electro-optic devices and thermophotovoltaic devices in particular. Due to the low electron effective mass of these materials (m
<sup>*</sup>
<0.2) and the demonstrated ability to incorporate n-type dopants into the high 10
<sup>19</sup>
cm
<sup>-3</sup>
range, both the Moss-Burstein band gap shift and plasma reflection characteristics are particularly dramatic. For InGaAs films with a nominal undoped band gap of 0.6 eV and N=5×10
<sup>19</sup>
cm
<sup>-3</sup>
, the fundamental absorption edge increased to 1.27 eV. InPAs films exhibit a shorter plasma wavelength (λ
<sub>p</sub>
∼5μm) in comparison to InGaAs films (λ
<sub>p</sub>
∼6μm) with similar doping concentrations. The behavior of the plasma wavelength and the fundamental absorption edge are investigated in terms of conduction band nonparabolicity and Γ-L valley separation using detailed band structure measurements and calculations. © 1999 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>86</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Moss-Burstein and plasma reflection characteristics of heavily doped n-type In
<sub>x</sub>
Ga
<sub>1-x</sub>
As and InP
<sub>y</sub>
As
<sub>1-y</sub>
</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CHARACHE (G. W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DEPOY (D. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RAYNOLDS (J. E.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BALDASARO (P. F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MIYANO (K. E.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HOLDEN (T.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>POLLAK (F. H.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>SHARPS (P. R.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>TIMMONS (M. L.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>GELLER (C. B.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>MANNSTADT (W.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>ASAHI (R.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>FREEMAN (A. J.)</s1>
</fA11>
<fA11 i1="14" i2="1">
<s1>WOLF (W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Lockheed Martin, Inc., Schenectady, New York 12301-1072</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>14 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics and New York State Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 12210</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194</s1>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Bettis Laboratory, West Mifflin, Pennsylvania 15122</s1>
</fA14>
<fA14 i1="05">
<s1>Northwestern University, Evanston, Illinois 60201</s1>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Molecular Simulations Inc., Orsay, France</s1>
</fA14>
<fA20>
<s1>452-458</s1>
</fA20>
<fA21>
<s1>1999-07-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 1999 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>99-0282029</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Degenerately doped (>10
<sup>19</sup>
cm
<sup>-3</sup>
) n-type In
<sub>x</sub>
Ga
<sub>1-x</sub>
As (x∼0.67) and InP
<sub>y</sub>
As
<sub>1-y</sub>
(y∼0.65) possess a number of intriguing electrical and optical properties relevant to electro-optic devices and thermophotovoltaic devices in particular. Due to the low electron effective mass of these materials (m
<sup>*</sup>
<0.2) and the demonstrated ability to incorporate n-type dopants into the high 10
<sup>19</sup>
cm
<sup>-3</sup>
range, both the Moss-Burstein band gap shift and plasma reflection characteristics are particularly dramatic. For InGaAs films with a nominal undoped band gap of 0.6 eV and N=5×10
<sup>19</sup>
cm
<sup>-3</sup>
, the fundamental absorption edge increased to 1.27 eV. InPAs films exhibit a shorter plasma wavelength (λ
<sub>p</sub>
∼5μm) in comparison to InGaAs films (λ
<sub>p</sub>
∼6μm) with similar doping concentrations. The behavior of the plasma wavelength and the fundamental absorption edge are investigated in terms of conduction band nonparabolicity and Γ-L valley separation using detailed band structure measurements and calculations. © 1999 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C61E</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C50M</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H20J</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70A18</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B70A20N</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B70C20M</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7361E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7350M</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7820J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7118</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>7120N</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>7320M</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Plasma semiconducteur</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Semiconductor plasma</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur fortement dopé</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Heavily doped semiconductors</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Effet électrooptique</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Electro-optical effects</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Masse effective</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Effective mass</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Bande interdite</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Energy gap</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Couche mince semiconductrice</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Semiconductor thin films</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Bande conduction</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Conduction bands</s0>
</fC03>
<fN21>
<s1>172</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>9923M000255</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/France/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001552 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/France/Analysis/biblio.hfd -nk 001552 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    France
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:99-0282029
   |texte=   Moss-Burstein and plasma reflection characteristics of heavily doped n-type InxGa1-xAs and InPyAs1-y
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024